

Isolement, structure et évaluation de substances marines à visée pharmacologique et thérapeutique. Nouvelles stratégies pour l'obtention de séries d'analogues naturels originaux

Olivier Grovel

Institut des Substances et Organismes de la Mer

Nearly 50% of marketed drugs used today are of natural origin or are inspired by natural products.

Are natural products still good drug candidates?

→ Determinism / chemical ecology

→ Diversity / Stereoselectivity

→ Druglikeness (Lipinski)

Number of rotatable bonds

Bertrand S. *et al., Biotechnol. Adv.,* **2014**, 1180-1204 Gu J. *et al., Plos One*, **2013**, e62839 Chen Y. *et al., Biomolecules*, **2019**, 43

J. Chem. Inf. Model. 2018, 58, 1518–1532

The chemical space of natural products: origins, prefered phyla, chemical distribution

 \approx 400,000 natural products described

Tay D.W.P. *et al., Sci. Data*, **2023**, 10:296 Sorokina M. *et al., J. Cheminform*. **2021**, 13, 2

Terrestrial and Marine biodiversities: an immense reservoir of chemical diversity

500 000 plants on earth

Estimation of 10¹² microbial species

270 000 described and classified

20 000 medicinal plants

Only a few thousands studied and chemically assessed

≈5.6-10⁶ inventoried

Bacteria Fungi Archae

Microalgae

The « silent » world, source of chemodiversity

Origin of life; 71 % of earth surface

The highest reservoir for biodiversity : ca. 10⁶ plants and animals and 10⁹ microorganisms High competition (up to 1000 species per m²); extreme environments (salinity, pressure, UV) Diversity of microbial communities (holobionts)

> Special features: - unique pathways - halogenated compounds

But: No history of traditional use in medicine
Issues: access, culture, sustainibility
→ First chemical investigations in early 1960's

2024: 20 marine-derived drugs marketed

Nantes Université

The « silent » world, source of chemodiversity

MNPs: *ca.* 27,000 novel natural products

The invisible world

62.1

To date only 1% of fungal biodiversity has been « observed »

 \rightarrow penicillins, cephalosporins, pleuromutilins,...

Annual description of original MNPs from marine-sourced fungi (incl. mangroves)

Carroll. A.R. et al., Nat. Prod. Rep.: annual reviews

- microalgae
- invertebrates

« Top-down » strategies

Traditional use of plants and animals: ethnopharmacology

Screening natural extracts libraries

\rightarrow Bioguided fractionation

A historical gold-standard pipeline: bioguided purification

Multi target screening

Hits selection

Bioguided fractionation

Principle of bioguided fractionation and purification

Strategies for researching natural products for therapeutics

« Top-down » strategies main issues: lack of novelty / few compounds in a series

Mahmud N. et al., Mal. J. Microbiol., 2020, 382-385

IS 💿 Mer IN Nantes

Université

H.J. Lee et al., Molecules, 2019, 1435

Screening of marine-sourced *Penicillium* extracts for osteosarcoma proliferation inhibition

Bone

24

ATLANTHERA

Screening for cytotoxicity: EtOAc and/or EtOAc/CH₂Cl₂ (1:1) extracts of cultures on sea water media

⇒ ≈ 500 fungal culture extracts screened

Strain MMS351

11 days culture YES/sea water medium 27°C EtOAC total extract

> POS1: 21% inhibition at 50 ng/mL AT6-1: 11% inhibition at 50 ng/mL KB : $IC_{50} = 57 \mu g/mL$

Isolation of bioactive metabolites from *P. ligerum strain* MMS351

	IC ₅₀ (nM)		SI	IC ₅₀ (nM)		SI	—
	POS1	L929	-	SaOS2	HFF2	_	
Ligerin	78	>2300	>29	137	>2300	>17	-
TNP470	2	>2300	>961	508	1979	4	—
Paclitaxel	95	521	5	52	NT		
Vincristine	75	419	6	11	NT		
Doxorubicine	43	161	4	48	NT		
Irinotecan	6300	6500	1	NT	NT		
Fludarabine	5700	17500	3	NT	NT		

Human cell lines

Ligerin: - activity higher on osteosarcoma cell lines

Murine cell lines

- similar activity with vincristine and doxorubicine on POS1 cell line

- lowest toxicity on non-tumor cell lines (L929 and HFF2)

- highest selectivity on human cells

TNP-470

Ligerin

0

но L

0

Takeda Pharm.

Ligerin analogs library construction: semisynthesis of new C6-branched derivatives

Ligerin analogs library construction: semisynthesis of new halogenohydrin derivatives

Atlantic

a) Hydrolysis (0.5 N NaoH, rt, 18 h); b) Esterification (anhydride, DMAP/dry pyridine, rt, 24 h); c) Halogenation (LiCl or LiBr, THF, acetic acid, rt, 24 h).

Antiproliferative evaluation of new analogs of ligerin

Nantes Université

Bone

 \rightarrow no enhancement of the activity

→ Ligerin exhibits the highest activity and selectivity

Nature is a source of large under-explored chemical libraries

The chaetoglobosins metabolic pathway

1 Biosynthetic Gene Cluster

« Bottom-up » strategies for enriching NPs libraries from *de novo* dereplication of extracts

« Bottom-up » strategies for enriching NPs libraries from *de novo* dereplication of extracts

Exploration of expressed chemical diversity, dereplication and classification: molecular networks

Exploration of expressed chemical diversity, dereplication and classification: molecular networks

Revisiting previously studied plants: targeted isolation of antiplasmodial indole monoterpenoids alkaloids of the serpentine series

Figure 1. Full molecular network realized using MS/MS data from the alkaloid extract from the bark of Geissospermum laeve and the reference compounds from the in-house alkaloid database. The cosine similarity score cutoff for the molecular network was set at 0.6. Details for clusters A-C are presented in Figures S3 and S4, Supporting Information.

Mzmine 2 GNPS

Geissospermum laeve

Penicillium expansum MMS42: neuroactive rare complex alkaloids

Biosynthesis of communesins: a common precursor and 2 equivalent series?

Alternative hypothesis: Com K \rightarrow acyltransferase \rightarrow DMV \rightarrow epoxydase \rightarrow DME

Diversity of DME ⇔ diversity of DMV?

Olivon et al., Anal. Chem., **2018**, 90, 13900. https://metgem.github.io Min fragments : 4 Cosine: 0.55 At least 1 cosine > 0.5 Iterations: 1000

DME-communesins: fragmentation pattern allows dereplication and structure prediction

 $[M+H]^+$: $m/z = [427+R^1+R^2]$

Targeted dereplication of DME-communesins using MN and R-script

Node annotated as a DME-communesin. Node size = DME score

Complementary score calculation allows to map structural prediction on MN

Other R² substituant

Fragmentation pattern and MS/MS-based structure prediction of DMV-communesins

DMV-communesins targeted MN mapped with substituents prediction

Communesins: enhanced targeted MN reveals a huge unexplored chemical diversity

		Communesin	No.*	Exact mass	Formula	n ¹	Substitu	ent n ³
		Communes in A	1	456.2525	CaeHaaNaOa	к СО-СН ₂	CH2	DME
Known compounds		Communes in E	2	508.2838	C32H36N4O2	CO-CsH7	CHa	DME
		Communes in [9	522.2631	C32H34N4O3	CO-C ₅ H ₇	СНО	DME
	DME	Communes in E		442.2369	C27H30N4O2	CO-CH ₃	н	DME
		Communes in H		484.2838	C30H36N4O2	CO-C ₃ H ₇	CH ₃	DME
		Communes in I-1		414.242	C26H30N4O	н	CH ₃	DME
		Communes in F	4	440.2576	C28H32N4O	CO-CH ₃	CH ₃	DMV
	DMV	Communes in J		492.2889	C32H36N4O	CO-C ₅ H ₇	CH3	DMV
		Com400		400.2263	C25H28N4O	н	н	DME
		Com442-1		442.2369	C27H30N4O2	Not i	dentified	DME
		Com442-2		442.2369	C27H30N4O2	Not i	dentified	DME
		Com454-1		454.2369	C28H30N4O2	C_2H_3	СНО	DME
		Com456-1		456.2525	$C_{28}H_{32}N_4O_2$	CO-CH ₃	CH ₃	DME
		Com456-2		456.2525	$C_{28}H_{32}N_4O_2$	Not i	dentified	DME
		Communes in N	5	470.2318	C28H30N4O3	CO-CH ₃	CHO	DME
		Com470-2		470.2682	C ₂₉ H ₃₄ N ₄ O ₂	CO-C ₂ H ₅	CH ₃	DME
		Com458-1		458.2318	$C_{27}H_{30}N_4O_3$	CO-CH ₃ O	н	DME
		Com458-2		458.2318	$C_{27}H_{30}N_4O_3$	Not i	dentified	DME
		Com458-3		458.2318	$C_{27}H_{30}N_4O_3$	Not i	dentified	DME
		Com472-1		472.2474	$C_{28}H_{32}N_4O_3$	C ₂ H ₅ O	CHO	DME
		Com472-2		472.2474	$C_{28}H_{32}N_4O_3$	C ₂ H ₅ O	CHO	DME
oduced by MMS42	DME	Com474		474.2631	$C_{28}H_{34}N_4O_3$	$C_2H_5O_2$	CH ₃	DME
		Com482		482.2682	$C_{30}H_{34}N_4O_2$	CO-C ₃ H ₅	CH ₃	DME
		Com484-1		484.2474	$C_{29}H_{32}N_4O_3$	Not i	dentified	DME
		Com486		486.2267	C ₂₈ H ₃₀ N ₄ O ₄	C ₂ H ₃ O ₂	CHO	DME
		Com488		488.2424	C ₂₈ H ₃₂ N ₄ O ₄	C ₂ H ₅ O ₂	CHO	DME
		Com494-1		494.2318	C ₃₀ H ₃₀ N ₄ O ₃	Not i	dentified	DME
		Com494-2		494.2682	$C_{31}H_{34}N_4O_2$	CO-C ₅ H ₇	н	DME
		Com494-3		494.2682	$C_{31}H_{34}N_4O_2$	CO-C ₄ H ₅	CH ₃	DME
		Com496-1		496.2474	C ₃₀ H ₃₂ N ₄ O ₃	CO-C ₃ H ₃ O	CH ₃	DME
		Com496-2		496.2838	C ₃₁ H ₃₆ N ₄ O ₂	CO-C ₄ H ₇	CH ₃	DME
		Com498		498.2995	C ₃₁ H ₃₈ N ₄ O ₂	CO-C ₄ H ₉	CH ₃	DME
		Com508-1		508.2838	C ₃₂ H ₃₆ N ₄ O ₂	CO-C ₅ H ₇	CH ₃	DME
		Com510-1		510.2631	C ₃₁ H ₃₄ N ₄ O ₃	CO-C ₄ H ₅ O	CH ₃	DME
		Com512-1	_	512.2787	C ₃₁ H ₃₆ N ₄ O ₃	CO-C ₄ H ₇ O	CH ₃	DME
		Communes in P	'	512.3151	C ₃₂ H ₄₀ N ₄ O ₂	CO-C ₅ H ₁₁	CH ₃	DIVIE
		Com518		514.2944	C U N O	CO-C4H9O	CH3	DIVIE
		Com518		516.2062		CO-C ₆ H ₅	CH3	DIVIE
		Com524-1		524.2787	C U N O	CO-C ₅ H ₇ O	CH3	DIVIE
		Com528		524.2787	C U N O	CO-C ₅ H ₇ O	CH3	DIME
ew		Com528		528.31	C ₃₂ H ₄₀ N ₄ O ₃	CU-C5H11U	CH3 dontified	DIVIE
		Com526		534.2842	C30F138N4U5	NOT I	CU-	DIVIE
		Com542		530.2767	CHN-O	CO-C-H-C	CH.	DME
		Com544		542.2093	C32H38W4U4	CO.C-U-O	CH ₂	DME
		Com546		546 2621	C34H32N4U3	CO-C7H30	CH ₃	DME
		Com548		548 2787	C24H24N4O3	CO-C-H-O	CHa	DME
		Com550		550.2944	C24H20N4O3	CO-C7H0O	CHa	DMF
		Com568		568 2686	C22H2-NAO-	CO-CH-	CcH-0-	DMF
		Com620		620 2999	C37HANNAO+	CO-C+H-	C6H7O2	DMF
		Com412-1		412 2263	CacHaeNeO	CHO	н	DMV
		Com412-2		412.2263	C26H28N4O	СНО	н	DMV
		Com426-1		426.242	C27H30N4O	CO-CH ₃	н	DMV
		Com426-2		426.242	C ₂₇ H ₃₀ N₄O	CO-CH ₃	н	DMV
		Com426-3		426.242	C ₂₇ H ₃₀ N₄O	СНО	CH₃	DMV
		Com454-2		454.2733	C ₂₉ H ₃₄ N ₄ O	CO-C ₂ H ₅	CH₃	DMV
		Communes in F	6	454,2369	C28H30N4O5	CO-CH ₃	СНО	DMV
	DMV	Com468	-	468.2889	C30H36NAO	CO-C ₃ H ₇	CH ₃	DMV
		Com484-2		484.2838	C30H36N4O3	CO-C ₃ H ₇ O	CH ₃	DMV
		Com484-3		484.2838	C ₃₀ H ₃₆ N ₄ O ₂	CO-C ₃ H ₇ O	CH ₃	DMV
		Com496-3		496.2838	C31H36N4O7	CO-C ₄ H ₇ O	CH ₃	DMV
		Communes in C	8	496.3202	C ₃₂ H ₄₀ N ₄ O	CO-C ₅ H ₁₁	CH3	DMV
		Com512-3		512.3151	C ₃₂ H ₄₀ N ₄ O ₂	CO-C ₅ H ₁₁ O	CH3	DMV
		Com536		536.2787	C33H36N4O3	CO-C ₆ H ₇ O ₂	CH ₃	DMV
		Com584		584,2999	CaaHaoNaOs	Not i	dentified	DMV

64 predicted compounds

8 (/12) known communesins

42 undescribed DME-communesins

 R^2 = other detected

 $\mathsf{R}^3 = -\mathsf{CH}_3, -\mathsf{C}_2\mathsf{H}_5, -\mathsf{C}_3\mathsf{H}_5, -\mathsf{C}_4\mathsf{H}_5, -\mathsf{C}_4\mathsf{H}_9, -\mathsf{C}_5\mathsf{H}_7, -\mathsf{CH}_3\mathsf{O}, -\mathsf{C}_4\mathsf{H}_5\mathsf{O}, -\mathsf{C}_5\mathsf{H}_{11}\mathsf{O}, -\mathsf{C}_5\mathsf{H}_9\mathsf{O}_2, \dots$

14 undescribed DMV-communesins

R³ = similar diversity as for DME-communesins

Synthesis of 9 communesins including 7 new

Biological activities and SAR

Cytotoxicity on cancer cell lines

KB > 50 IC50 (µM) MCF-7 > 50

Combining extract fractionation, bioactivity screening and molecular networking for prioritisation and targeted isolation of series of bioactive natural products

Concept

Case study

Wolfender J.-L. et al., Nat. Prod. Rep., 2019, 855-868

Figure 4. In vivo anti-VRE activity of compound 4 in the VRE-G. mellonella infection model.

IN Nantes ✔ Université

ThalassaMICS

Marine Microbiome Metabolites group

Dr Samuel BERTRAND Pr Olivier GROVEL Pr Catherine ROULLIER Dr Karina PETIT Dr Nicolas RUIZ **Dr Emmanuel GENTIL** Pr Gaëtane WIELGOSZ Dr Aurélie MOSSION Dr Elise GEROMETTA Thibaut ROBIOU DU PONT Aurore MICHAUD Vony RABESAOTRA **Eva PAPARIS Clémence MARIVAIN** Delphine NEGRE **Olivier BERRY** Clémence MARIVAIN Thi Phuong Thiy HOANG Van Tuyen LE